Inactivation effects of calcium hydrogen carbonate mesoscopic crystals on various kinds of animal viruses including foot-and-mouth disease virus.

Maho Osaki¹, Koichi Furusaki², Rumiko Onishi², Takashi Onodera³, Hoang Vu Dang⁴, and Rikio Kirisawa¹

¹Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.

²Mineral Activation Technical Research Center, Omuta, Fukuoka, Japan.

³Research Center for Food Safety, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

⁴Department of Discher legislature and Japanese Plant Beauty Research.

³Research Center for Food Safety, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. ⁴Department of Biochemistry and Immunology, National Institute of Veterinary Research, Hanoi, Vietnam.

Virucidal effects of a novel electrically charged disinfectant, CAC-717, on various kinds of viruses were investigated. CAC-717 is an alkaline solution (pH 12.3) and has a self-electromotive force, but it is harmless and not irritant to humans and animals because it contains no chemicals. CAC-717 is produced by applying an electric field to mineral water containing calcium hydrogen carbonate in order to generate mesoscopic crystals (Fig. 1).

Methods

- 1. Sixteen kinds of animal viruses were used: foot-and-mouth disease virus (FMDV) (A, O and Asia1 types), bovine rhinitis B virus, bovine adenovirus type 7 (BAdV-7), infectious bovine rhinotracheitis virus (IBRV), bovine parainfluenza virus 3, bovine respiratory syncytial virus, bovine viral diarrhea virus (BVDV) (genotypes I and II), equine herpesvirus 1 (EHV-1), equine influenza A virus (H3N8), Aujeszky's disease virus (ADV), swine influenza A virus (pandemic, H1N1), canine parvovirus 2 (CPV-2), canine distemper virus, canine herpesvirus 1, Newcastle disease virus and bulbul orthoreovirus.
- 2. Nine volumes of CAC-717 were mixed with one volume of virus and incubated for 1 hour at room temperature. CAC-717 was removed by gel filtration on Sephadex LH-20. Virus titers were determined by titration in appropriate cell cultures.
- 3. Effects of CAC-717 against viral genomes inside virions were examined by quantifying their genomes by real-time PCR.

Results

- 1. Virus titration analyses showed that CAC-717 treatment achieved reductions of 2.00 log10 to 5.50 log10 and over against all of the viruses tested in this study (Tables 1 & 2).
- 2. The influence of fetal bovine serum (FBS) as organic matter on the antiviral effect of CAC-717 was examined. In the presence of 20% to 50% FBS, the virucidal effect of CAC-717 was abolished (Fig. 2).
- 3. Real-time PCR revealed that among the DNA viruses tested, CAC-717 treatment tended to reduce the amounts of IBRV, EHV-1 and BAdV-7 genomes (Table 3). Genomes of RNA viruses except for BVDV I & II were reduced drastically after CAC-717 treatment (Table 4).
- 4. Direct treatment of CAC-717 to ADV and CPV-2 DNAs and BVDV II RNA, the quantity of which was not reduced after CAC-717 treatment to virions, destroyed their genomes (Table 5).

Conclusion

Virucidal effects of CAC-717 on enveloped DNA and RNA viruses and on non-enveloped DNA and RNA viruses were observed. CAC-717 could inactivate all types of animal viruses including FMDV. However, organic matter influenced the virucidal effect of CAC-717. CAC-717 might act on the inside of most RNA viruses and destroy their RNA genomes. The electrical potential generated on the surface of minerals in CAC-717 and its high pH value (pH 12.3) might play key roles in the anti-viral mechanism of CAC-717. CAC-717 may be used effectively and safely as a disinfectant against various kinds of animal viruses.

Viruses	CAC-717 *
Enveloped virus	
IBR virus	≥5.00
Aujeszky's disease virus	≥5.00
Canine herpesvirus 1	≧3.00
Equine herpesvirus 1	≧5.50
Non-enveloped virus	
Bovine adenovirus 7	≧4.50
Canine parvovirus 2	≥3.00

Viruses	CAC-717 *
Enveloped virus	
Bovine RS virus	≧3.00
Bovine PI3	≧ 4.00
Canine distemper virus	≧2.00
Newcastle disease virus	≧ 4.00
SIV (Pandemic, H1N1)	≧ 4.00
EIV (H3N8)	≧2.00
Bovine viral diarrhea virus I	≧2.75
Bovine viral diarrhea virus II	≧3.75
Non-enveloped virus	
FMDV type A	≧4.75
FMDV type O	≧3.50
FMDV type Asia 1	≧4.00
Bovine rhinitis B virus	≧2.75
Bulbul orthoreovirus	≧3.50

Table 3. Genome quantif treated with		
DNA viruses	Solutions	
	CAC-717	Tap water
Enveloped virus		
Aujeszky's disease virus	113.75 *	101.61
Canine herpesvirus 1	95.36	93.95
IBR virus	33.61	89.14
Equine herpesvirus 1	17.10	88.81
Non-enveloped virus		
Canine parvovirus 2	93.82	82.30
Bovine adenovirus 7	37.35	106.43

with CAC-7	717	
RNA viruses	Solutions	
	CAC-717	Tap water
Enveloped virus		
Bovine PI3	2.61*	62.51
Bovine RS virus	0.00	114.64
Canine distemper virus	0.00	102.48
EIV (H3N8)	2.20	43.94
SIV (Pandemic, H1N1)	7.36	164.48
Newcastle disease virus	12.15	52.44
Bovine viral diarrhea virus I	105.32	182.07
Bovine viral diarrhea virus II	57.02	116.63
Non-enveloped virus		
Bovine rhinitis B virus	0.56	64.60
Bulbul orthoreovirus	0.10	134.13

Table 5. Direct treatment of CAC- the quantity of which w CAC-717 treatme	as not reduced after
Viral genomes	CAC-717
Aujeszky's disease virus DNA	0.07 *
Canine parvovirus 2 DNA	0.06
Bovine viral diarrhea virus II RNA	0.03

addition of maintenance medium